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In the present work the following aspects have been
developed: firstly a mathematical and numerical model isIn this paper an improved formulation of the equilibrium equation

for the free surface is presented which eliminates the need to evalu- proposed for studying steady two-dimensionally combined
ate the constant pressure effect. This has then been used in conjunc- thermocapillary and buoyancy induced flows in a variety
tion with a vorticity-velocity formulation discretized using a curvilin- of different physical and geometrical situations; and then
ear coordinate system in two dimensions. The system of non-linear

some interesting applications for water at different Maran-equations resulting from the discretization of field equations, the
goni, Bond, and Capillary numbers and contact angles arefree surface displacement, and mesh description are solved simulta-

neously using Newton’s method. This method has been validated studied and discussed.
using a number of previously reported test cases. The techniques The equations of mass, momentum, energy, and related
presented have been used to study the effects of free surface de- boundary conditions together with the equations for the
formation and fluid/solid contact angle on combined buoyancy

equilibrium of the interface have been written in generaland thermocapillary convection in a steel container filled with
tensor form. The governing equations are then rewrittenwater. Q 1997 Academic Press

as proposed by Guj and Stella [8] in a vorticity-velocity
formulation thus eliminating the need to evaluate the pres-

1. INTRODUCTION sure. The equilibrium equation for the free surface is re-
written in terms of the surface slope thus eliminating the

The effects of surface deformation are neglected in com- need to evaluate the constant pressure effect that has to
putation of thermocapillary and buoyancy driven flows by be computed using an integral condition (e.g., Strani et al.
the majority of recent works (e.g., Rivas [1, 2] and Babu [5]). All the equations are then discretized by a finite vol-
and Korpela [3]). This hypothesis is justified from the phys- ume (FV) technique in a generalized curvilinear coordinate
ical point of view when the capillary number is small and system which fits the geometry. This geometry can be com-
in particular when the contact angle (d) is equal to 0. From plex, due either to the prescribed solid walls shape (e.g.,
the numerical point of view, the condition of a flat free a solidification surface) or to free surface deformation (for
surface is particularly simplifying, permitting the use of a high Capillary number or contact angle).
cartesian coordinate system. It is therefore usual to study All the equations are written in such a way that a simulta-
surface deformations for small capillary numbers (Ca), as neous steady solution for all the variables, including the
a post processing of the known flow field (see, e.g., Rivas free surface elevation, is obtained using Newton’s method
[1, 2] and Babu and Korpela [3]). starting from an appropriate initial guess. In this way a

Much work has been done in steady and transient ther- variety of complex flow situations can be easily solved and
mocapillary flows coupling the flow and thermal equations a parametric study can be conducted.
with those of the surface equilibrium in asymptotic theory In this paper the applicability of the proposed formula-
for an aspect ratio A going to 0 (Sen and Davis [4]), which tion and the accuracy of the numerical code are evaluated
corresponds to neglecting the inertial terms in the momen- by solving test cases available in the literature (Sen and
tum and energy equations at the leading order of approxi- Davis [4], Strani et al. [5], and Behnia et al. [10]). Then
mation. The work of Strani et al. [5] reports, in the case following the systematic study and categorization of the
of zero gravity, not only asymptotic solutions for A going thermocapillary flows in terms of the non-dimensional
to 0 but also numerical simulations for general cases at groups, results for water (intermediate Prandtl number) in
various A and Ca values (see also Sen [6] and Kuhl- standard and zero gravity situations and small temperature

gap are presented and discussed. The importance of themann [7]).
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FREE SURFACE IN BUOYANCY–THERMOCAPILLARY CONVECTION 35

2.2. Interfacial Stress Balance

On the free surface, which is assumed to be in equilib-
rium, there is an interfacial stress balance. This results in
the following normal and tangential equations at the in-
terface,
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FIG. 1. 2D cavity of length L and height H with top free surface.
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Marangoni number effect on either the fluid flow and ther- in which h9 is the departure of the interface from the free
mal fields or on the elevation of the surface is analyzed. flat surface, and the (t, n) coordinate system is located on
The numerical surface elevation is demonstrated to differ the surface of the interface as shown in Fig. 2. The surface
in a significant way from the analytical solution of Sen tension s is assumed to be a linear function of temperature
and Davis [4] for zero contact angle and high Marangoni given by
numbers. It is shown that the contact angle can affect quite
significantly the shape of the free surface and the flow

s9(T) 5 s 2 c(T9 2 T9R), (6)and thermal fields in the bulk of the fluid domain for
certain physical situations. Finally results confirm that

where s and c 5 2s9/T9 are assumed to be constantthe effect of Capillary number (that is small in the
and evaluated at the reference temperature, T9R .proposed application) is negligible and that the Bond

To permit the numerical implementation of the determi-number can affect the shape of free surface as well as
nation of the free surface, it is advantageous to manipulateflow and thermal fields.
Eq. (4) to avoid the need to evaluate the pressure on the
surface by an integral condition (Strani et al. [5]). First we

2. MATHEMATICAL FORMULATION differentiate Eq. (4) with respect to t9, and then replace
the resulting 2p9/t9 term using the t9 component of the

2.1. Governing Equations momentum equation on the surface, viz.

Consider a rectangular two-dimensional cavity of length
L, height H and aspect ratio A 5 H/L, as shown in Fig. p9

t9
5 2r



t9
Su92

t

2 D2 e
g9

n9
2 rbg(T9 2 T9R) Sg

g
? tD , (7)

1. It contains a Boussinesq Newtonian liquid of density r,
dynamic viscosity e, and thermal diffusivity a. The right
wall is maintained at a temperature TH , the left wall at a where g9 5 2u9t /t9 (u9n 5 0 on the surface).
temperature TC , the bottom wall is adiabatic, and the upper
surface is a free deformable surface bounded by a passive
gas of negligible density and viscosity.

The governing equations for steady state problems are
those of the conservation of mass, momentum and energy
which are

= ? u9 50 (1)

ru9 ? =u9 5 2=p9 1 e =2u9 2 rbT9g (2)

u9 ? =T9 5 a =2T9 (3)

in which u is the velocity vector, T is the temperature, p
is the dynamic pressure, the prime denotes dimensional
variables, g is the gravitational acceleration vector and b

FIG. 2. Coordinate system on free surface.
is the coefficient of thermal expansion.
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TABLE IThus Eq. (7) yields after some manipulation the final
form of the interfacial stress balance equation: Non-dimensional Groups for Different Scaling Velocities
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a
L

up 5
n
L

up 5
ucu DT

e


t9
S[s 2 c(T9 2 T9R)]

2h9

t92D2 r


t9
Su92

t

2 D M1 1 1 1
Pp
ru2

p

M2 Pr 1
e

rLup

Pr
Ma1 e S2

2u9t

t92 2
g9

n9
D2 rg

h9

t9
(8)

M3 GrPr 2 Gr
gLb DT

u2
p

GrPr
Ma2

E1 1
a

Lup

1
Pr

1
Ma2 rbg(T9 2 T9R) Sg

g
? tD5 0.

N1 Ca Ca Ca
ucu DT

s

N2
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The governing equations have been non-dimensional- eup
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tion of the five independent non-dimensional groups as
shown in Table I.

in which up and pp represent suitable scaling for the veloc- Three common choices for the velocity scale which have
ity and pressure yet to be defined. The conservation equa- appeared in the literature are up 5 a/L (conduction equal
tions (1)–(3) thus become convection), up 5 n/L (low buoyancy), and up 5 ucu DT/

e (Marangoni flows). The last velocity scale gives the ad-
vantage that no parameters appear in the boundary condi-

= ? u 5 0 (9) tions when the interface is flat. The other forms yield non-
dimensional groups in the tangential stress condition,

u ? =u 5 2M1 =p 1 M2 =2u 2 M3q
g

g
(10) which may result in ill-conditioned boundary conditions

for extreme values of the Marangoni number (Ostrach
u ? =q 5 E1 =2q (11) [11]). These three different non-dimensionalisation

schemes have been summarized in Table I, where

while the surface equilibrium equations are
Pr 5
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? tD5 0 (12) numbers, respectively. The reference velocity up 5 ucu

DT/e has been used throughout this study unless differ-
ently specified.Sut

n
1
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t
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t
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2.4. Vorticity-Velocity Formulation

The vorticity g defined as
where Mi , E1 , Nj, T1 (i 5 1, 3, j 5 1, 5) are ten non-
dimensional groups which can be expressed as a combina- v 5 = 3 u (14)
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is introduced in the governing equations to eliminate the 4. NUMERICAL MODEL
pressure as a solution variable. Taking the curl of the

4.1. Coordinate Systemmomentum equation and of the definition of the vorticity,
the vorticity transport equation and kinematic relation be- The governing equations ((11)–(13) and (15)–(16)) are
tween the vorticity and velocity are obtained, viz. discretized using a finite-volume approximation on a non-

uniform mesh. We use a system of generalized coordinates
j i (i 5 1, 2) in the physical plane, where the interface

= ? (gu) 5 M2 =2g 2 M3 = 3 Sq
g

gD (15) coincides with a coordinate line. J, g1, g2 are respectively
the Jacobian and the rows of the transformation matrix

=2u 5 2= 3 v. (16) x/ji at the center of the control volume.

3. BOUNDARY CONDITIONS
4.2. Discretization Scheme

The staggering of the variable location is chosen not
only to obtain the maximum accuracy of the discretizedAll boundaries of the enclosure (Fig. 1), except the top
derivatives but also to ensure the discrete conservation offree surface, are assumed to be solid, impermeable, and
mass, vorticity, and thermal energy. As discussed by Gujat rest. The velocity boundary conditions on the rigid
and Stella [8], it is possible to obtain mass conservation,walls are
to round-off error, if the horizontal velocity u is located
at the middle of the vertical face of the computational

u 5 0 (17) cell and the vertical velocity v is located at the middle
of horizontal face. Similarly, conservation of vorticity is
achieved if g is located on nodal points, and conservationwhile the velocity boundary conditions on the free surface
of thermal energy if q is located at the center of the compu-are Eq. (13) for the tangential component ut , and un 5 0,
tational cell. We assume that the two-dimensional domainfor the normal component. The boundary conditions for
V can be discretized into a group of quadrilaterals. Thevorticity are obtained directly from the definition of the
vertices, centers and midpoints of the edges of the quadri-vorticity (eq. (14)) for all the boundaries.
lateral are denoted by xi, j , xi11/2, j11/2 , xi11/2, j (or xi, j11/2),The temperature boundary conditions are
respectively, and gi, j is stored on xi, j , ui, j on xi, j21/2 , vi, j on
xi21/2, j , and qi, j on xi21/2, j21/2 .

After some manipulation each equation is integrated
q

n
5 0 (18)

over an appropriate control volume which depends on the
equation that has to be discretized (see Fig. 3) and theon the adiabatic bottom wall as well as on the top free
Gauss divergence theorem is then applied. We obtainsurface, where n is the normal direction and

Ak R
Gi j
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Vi j

Q dV,q 5 1
(19)

(20)q 5 0

whereon the isothermal vertical walls (see Fig. 1).
The three boundary conditions for the surface deforma-

tion (Eq. (12)) are
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from the mass conservation.
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diffusion terms. In this case appropriate values of the gradi-
ents of f on the cell faces need to be obtained. We use
the expression on =f in general coordinates and obtain
(see Fig. 4)

R
Gi j

=f ? n dl Q h(fE 2 fp)[(Dx12)2 1 (Dy12)2]

2 (f2 2 f1)[Dx12 DxPE 1 Dy12 DyPE]j/Je

1 h(fN 2 fP)[(Dx23)2 1 (Dy23)2]

2 (f3 2 f2)[Dx23 DxPN 1 Dy23 DyPN]j/Jn

1 h(fW 2 fP)[(Dx34)2 1 (Dy34)2]

2 (f4 2 f3)[Dx34 DxPW 1 Dy34 DyPW]j/Jw

1 h(fS 2 fP)[(Dx41)2 1 (Dy41)2]

2 (f1 2 f4)[Dx41 DxPS 1 Dy41 DyPS]j/Js ,

where
FIG. 3. Control volumes for the equations associated to g, q, u, and

v, respectively.

Je 5 Dy12 DxPE 1 DyPE Dx12 Jn 5 Dy23 DxPN 1 DyPN Dx23

Jw 5 Dy34 DxPW 1 DyPW Dx34 Js 5 Dy41 DxPS 1 DyPS Dx41Gi j is the boundary of Vi j and n is the outward drawn
unit normal.

andUsing the nomenclature shown in Fig. 4, the general
form of the convective terms becomes

J(ug1
x 1 vg1

y) 5 u Dysn 2 v DxsnR
Gij

(c, x) ? n dl Q (ce Dy12 2 xe Dx12) 1 (cn Dy23 2 xn Dx23) J(ug2
x 1 vg2

y) 5 v Dxwe 2 u Dywe .
1 (cw Dy34 2 xw Dx34) 1 (cs Dy41 2 xs Dx41).

In the last term of (20), Q has been considered constant
A finite-volume discretization is also used to compute the in the control volume, yielding

E E
Vij

Q dV 5 VijQP ,

where for QP we have

S2Vi j
q

xDP
5 [(q2 2 q4) Dy13 2 (q3 2 q1) Dy42]

Sg
j 1D

P
5 (ge 2 gw)

Sg
j 2D

P
5 (gn 2 gs).

The unknowns for the problem are not prescribed at all
the focal points (see the sketch of the computational mole-
cule); so a bilinear interpolation has been adopted for

FIG. 4. Computational molecule notation. evaluating the unknowns where needed.
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FIG. 5. Mesh sensitivity analysis for the surface elevation at Pr 5 6.95, Ma 5 5200, Ca 5 0.01, Bo 5 Gr 5 0, A 5 0.2.

4.3. Method of Solution f
xUxo

Dx 5 2f (xo). (23)
4.3.1. Newton’s Method. The system of non-linear

equations described in the previous section can be symboli-
cally written as The Jacobian matrix J 5 f/x represents the sensitivity of

the initial vector to changes in the solution. The successive
approximations for x are obtained using(21)f(x) 5 0,

xn11 5 xn 1 Dx. (24)where f includes field equations written for the entire solu-
tion domain, the boundary conditions and equations for

4.3.2. Jacobian Evaluation. Evaluation of the Jacobianthe evaluation of the free surface displacement. x is a
matrix can be obtained either analytically or numerically.possible solution which includes the vorticity, two velocity
The analytical evaluation is obviously possible but difficultcomponents and temperature in the entire domain, and the
especially when the problem has such a large dimensionsurface displacement slope (h/t) on the free boundary.
and complexity. In the present paper a numerical evalua-Furthermore when the free surface deformation is also
tion of J has been preferred. This procedure requires onlyincluded in the model, x also incorporates the grid coordi-
the evaluation of the residual function f(x) and is computa-nates (t, n) and f incorporates the algebraic equation for
tionally very simple. The Jacobian J is approximated usingthe evaluation of t and n from the surface deformation h.

In this way Newton’s method permits the simultaneous
solution of all the variables. fi

xj
P

fi(x 1 «ej) 2 fi(x 2 «ej)
2«

(25)
Newton’s iteration is obtained in the usual way by con-

sidering a linearization of the problem on an initial guess
xo for x in which ej is a unity vector in the j direction (i.e., it has

zero on all the components except on the jth that is 1) and
« is a small quantity suitable for numerical differentiation

f(xo) 1
f
xUxo

Dx 5 0 (22) (we have determined using numerical experimentation that
1023 is a good value). It is obvious that a straightforward
implementation of Eq. (23) requires 2N 2

eq (where Neq is
the number of equations solved) evaluations of f (x), withyielding
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FIG. 6. Mesh sensitivity analysis for the ut at Pr 5 6.95, Ma 5 5200, Ca 5 0.01, Bo 5 Gr 5 0, A 5 0.2.

a consequent prohibitive computational cost. However, ments are assumed to be zero. This avoids the generation
of non-zero elements in the bandwidth of the matrix, sosince the sparsity pattern of J is known, its economical

evaluation can be performed for the elements that are non- that L and U factors have the same sparsity pattern of the
original matrix J with an enormous saving in both CPUzero. This significantly reduces the computational costs.
time and memory requirements.

4.3.3. Solution of the Linear System. For the solution
of the linear set of equations (23) a preconditioned Bi 2 4.3.4. Stability of the Steady Solutions. Since the goal
CGStab technique (Stella and Bucchignani [9]) has been of the present method is to find steady solutions using a
adopted. Bi 2 CGStab is a suitable method for solving fast numerical technique, we adopted a Newton Method
sparse linear systems such as those generated by finite suitable for finding a steady state solution. A true transient
volume techniques applied to computational fluid dy- variant of the method has been adopted only to verify a
namics. posteriori the stability of the solutions.

Incomplete LU factorization with zero fill-in (ILU(0)) The time has been non-dimensionalised using tp 5 up/L
has been chosen as a preconditioner. ILU factorization as a scaling variable, then the time-dependent form of the
requires the generation of a lower (L) and upper (U) conservation equations (11)–(15) becomes
triangular factorization. This can be obtained by writing
a variant of the Crout factorization algorithm. Only the qt 1 u ? =q 5 E1 =2q (26)
elements that originally are non-zero in the matrix J are
evaluated and stored in LU factorization; the other ele-

gt 1 = ? (gu) 5 M2 =2g 2 M3 = 3 Sq
g

gD . (27)

TABLE II Thus, the system of non-linear equations can be symboli-
cally written asMesh Sensitivity Analysis

Variable 81 3 41 161 3 41 321 3 41 n Extrapolation

b
x
t

1 f(x) 5 0
hmin 22.039 ? 1023 22.162 ? 1023 22.226 ? 1023 0.96 2.293 ? 1023

vmax 6.646 ? 1023 7.053 ? 1023 7.144 ? 1023 2.15 7.170 ? 1023

vmin 26.356 ? 1023 26.763 ? 1023 26.877 ? 1023 1.83 26.922 ? 1023

with b 5 0 except for the discretized form of the field(ut)Peak 3.270 ? 1022 3.940 ? 1022 4.224 ? 1022 1.24 4.433 ? 1022

equations (27)–(26) for which b 5 1. Starting from the
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FIG. 7. u(up 5 a/L) velocity profiles in the x 5 0.5 cavity mid-plane at various Ma and Pr 5 7, Gr 5 1429, A 5 1. * indicates the 3D solution
from Behnia et al. [10].

FIG. 8. v(up 5 a/L) velocity profiles in the y 5 0.5 cavity mid-plane at various Ma and Pr 5 7, Gr 5 1429, A 5 1. * indicates the 3D solution
from Behnia et al. [10].
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FIG. 9. Surface elevation for A 5 0.2, Ma 5 5, Pr 5 0.2, and Ca 5 0.04 (case proposed in Sen and Davis [4]). ‘‘Numerical 1’’ is post-processed
from the flat condition while ‘‘Numerical 2’’ is explained in Subsection 4.3.

steady solutions, a few time iterations for x were calculated 5. RESULTS
using a fully implicit scheme,

5.1. Validation of the Numerical Method

The numerical solutions can be affected by two kinds
xn11 5 xn 2 Fb

I
Dt

1
f
xUxn

G21

f(xn). of errors: discretization errors and consistency errors. First
a mesh sensitivity analysis is performed in order to deter-
mine the grid spacing requirements for obtaining accurate

For all the results shown, the solution found using this solutions and to evaluate the convergence order of the
time dependent approach was indistinguishable from the discretization scheme. The following values for the dimen-

sionless parameters have been selected as a test case:previous stationary one, assuring the stability of the
steady solutions. Pr 5 6.95, Ma 5 5200, Ca 5 0.01, Bo 5 Gr 5 0, A 5 0.2.

FIG. 10. Mesh used for studying the test case proposed by Piva et al. [12].
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FIG. 11. Streamlines for Pr 5 1, Gr 5 Bo 5 0, A 5 0.2, Ca 5 0.02, Ma 5 20, and tan d 5 0.27.

Initially three different meshes have been investigated: 41. In Figs. 5 and 6 the effect of mesh on surface deforma-
tion, h, and tangential velocity on the free surface, ut , is41 3 21, 81 3 41, and 161 3 81; these meshes give 4041,

14441, 54441 unknowns, respectively. The analysis of the presented. A quantitative mesh sensitivity analysis to-
gether with the order of convergence, n, and extrapolatederror between 81 3 41 mesh results and the extrapolated

values obtained by using a Richardson extrapolation for values obtained using a Richardson extrapolation (in the
x direction) are presented in Table 2.the quantities in the bulk of the domain has shown very

good accuracy. The results are not shown here because The results confirm the finding of the first sensitivity
analysis. We found that the method is approximately sec-they are indistinguishable from the 81 3 41 mesh results.

The order of convergence found was approximately equal ond-order accurate (x direction) for the internal fields
whereas it is first-order accurate for the free surface quanti-to two. On the other hand, the resolution of the boundary

layer near the lateral walls was not adequate. A second ties. This is due to the fact that although the surface equilib-
rium equation is discretized using a second-order scheme,mesh analysis was therefore performed, increasing the

number of points in the x direction. Although the numeri- h appears implicitly in all the equations throughout the
grid, since body fitted coordinates have been used. Conse-cal procedure is very robust it has large memory require-

ments and it was therefore necessary to limit the number quently, by its very nature, h can only be first order. This
first order effect is clearly seen in Fig. 5. Further, since theof mesh points in the y direction to 41. This from the

previous analysis was found to be sufficiently accurate. tangential velocity component on the free surface, ut , is
not a solution variable, but rather is obtained by a linearThree meshes were tested: 81 3 41, 161 3 41, and 321 3

FIG. 12. Isotherms for Pr 5 1, Gr 5 Bo 5 0, A 5 0.2, Ca 5 0.02, Ma 5 20, and tan d 5 0.27.



44 LABONIA ET AL.

FIG. 13. Surface elevation at various Ma with Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08.

interpolation and a subsequent projection of u on the tan- To examine the second type of errors, the results of the
present simulations were compared with Behnia et al. [10].gent of the free surface (which is first-order) it is not sur-

prisng that this is of order 1.24. Particularly, for testing the buoyancy and thermocapillary
convection, we reproduced three test cases (Figs. 7 andThe results discussed above induced us to adopt a

321 3 41 mesh through all this work. 8) from Behnia et al. [10] in which a range of solutions

FIG. 14. Tangential velocity (ut) on free surface at various Ma with Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08.
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FIG. 15. Streamlines for Ma 5 5200, Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08 with Dc 5 5.49609 3 1025.

was presented for changing Ma. The agreement between vation (h) can be written in the following form which is
appropriate for an order of magnitude analysis:the results obtained with the present code (81 3 81

mesh for the aspect ratio of 1) and those of Behnia et
al. [10] is very satisfactory. The discrepancies which were

h 5 2
1
16

Ca
A

(x 2 0.5)(4x2 2 4x 2 2)

(28)
observed are due to three-dimensional effects which are
not accounted for in the present two-dimensional simu-
lation.

1
1

12
tan d(12x2 2 12x 1 2),

5.2. Accuracy of Evaluation of the Interface

Particular attention has to be paid to the validation of the where d is the contact angle from the horizontal and x is
the projection over the horizontal of the non-dimensionalmethod proposed for evaluating the surface deformation

(Eqs. (12) and (13)). The present numerical results have x introduced in subsection 2.3.
In Fig. 9 the numerical evaluation of h obtained usingbeen compared with the analytical solution obtained by

Sen and Davis [4]. For zero gravity, small aspect ratio, and an 81 3 41 mesh is compared to the analytical solution of
Sen and Davis [4] with the following parameter values:neglecting the convective terms in the energy equation, Sen

and Davis obtain an analytical expression for the interface A 5 0.2, Ma 5 5, Pr 5 0.2, and Ca 5 0.04. Two numerical
methods for determining the surface were tested: ‘‘Numeri-shape which is particularly suitable for the present valida-

tion. By algebraic manipulation of this expression, the ele- cal 1’’ is a post-processing of results obtained using a flat

FIG. 16. Streamlines for Ma 5 15600, Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08 with Dc 5 5.24605 3 1025.
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FIG. 17. Vertical velocity in the y 5 0.5 cavity mid-plane at various Ma with Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08.

surface condition (as done by Rivas [2]) while ‘‘Numerical and mesh coordinates equations. Both numerical solutions
are very close to the analytical h(x) and the difference2’’ is using the currently proposed method, in which the

interface is obtained by solving implicitly the system re- is negligible.
The last test case is a problem studied by Piva et al.sulting from the coupled governing conservation equations

FIG. 18. Horizontal velocity in the x 5 0.5 cavity mid-plane at various Ma with Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08.
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FIG. 19. Isotherms for Ma 5 5200, Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08.

FIG. 20. Isotherms for Ma 5 15600, Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08.

FIG. 21. Streamlines for tan d 5 20.1 and Ma 5 5200, Ca 5 0.01, Gr 5 Bo 5 0 with Dc 5 5.49609 3 1025.
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FIG. 22. Streamlines for tan d 5 20.35 and Ma 5 5200, Ca 5 0.01, Gr 5 Bo 5 0 with Dc 5 5.49609 3 1025.

[12] for tan d and Ca values for which large free surface behavior can be explained by considering the tangential
deformations occur. The parameters used are Pr 5 1, velocity on the free surface (Fig. 14). From Eq. (12) it can
Gr 5 Bo 5 0, A 5 0.2, Ca 5 0.02, Ma 5 20, and tan d 5 0.27. be shown that h(x) Y u2

t Ma. It can be seen from Fig. 14
The free surface shape determined using the asymptotic that as Ma is increased this product decreases and conse-
theory (Eq. (28)) and the numerical calculations are indis- quently the surface deformation decreases too. We have
tinguishable from the graphical point of view and so the to observe that the effect of the non-linear terms in Eq.
figure is not shown here (maximum difference equal to (11) gives a growth of a thermal boundary layer close to
1.8%). The strong effects that large surface deformation the right hand wall (Figs. 19 and 20); consequently, from
has on the streamlines and thermal fields1 when calculated Eq. (13), the kinematical boundary layer near the free
by our proposed implicit technique can be clearly seen in surface becomes thinner closer to x 5 1 and the trend of
Figs. 10–12. the superficial tangential velocity (Fig. 14) shows a steep

We have shown the accuracy of the proposed numerical increase followed by rapid decrease for satisfying the
procedure and the robustness of the implicit solution boundary condition at x 5 1. This behavior has been dis-
method. cussed in Strani et al. [5]. The intensity of the global recircu-

lation decreases for increasing Ma (Figs. 15 and 16) even
5.3. Water Result if the fluid structures tend to became more complex with

the development of a second and third vortex which rotateIn order to investigate the effects of Marangoni, Capil-
in the same direction of the single vortex seen in Fig. 11.lary, Bond, and Grashof numbers and contact angles on
These behaviors are also exhibited by the profiles of thethermocapillary and buoyancy induced flows we have stud-
vertical velocity shown in Fig. 17, and the reduction of theied the behavior of water (Pr 5 6.95) in a steel container,
strength of the vortex is confirmed by Fig. 18. Due to anwith A 5 0.2 at the averaged temperature of T9R 5 (TH 1
increase in the strength of the left vortex, the isothermsTC)/2 5 208C.
(Fig. 19 and 20) become distorted and the thickness of theFirst, the effect of Ma on the free surface was investi-
thermal boundary layer near the lateral walls is reduced.gated. This was achieved by varying the length, L, from 1
The hot fluid penetration in the bulk of the domain isto 3 mm for a DT of 58C which corresponds to Ma varying
enhanced by the strength of the upper left vortex.from 5200 to 15600. The other parameters were chosen to

If we add the effects of buoyancy forces to those ofbe Gr 5 Bo 5 0, Ca 5 0.01, and d 5 08. The surface
surface tension, the flow structure does not change. Thisdeformation is, as expected, negligible with respect to the
behavior is expected by an order of magnitude consider-height of the cavity, but the dependence of h(x) on Ma
ation. For the non-dimensional parameters considered, the(Fig. 13) is still significant so that the analytical shape of
orders of dependence on the length scale are Bo Q O(L2),Sen and Davis [4] cannot be applied at high Ma. This
Gr Q O(L3), but Ma Q O(L). At earth gravity and with
L 5 1023 m, Bo and Gr (Gr 5 10 and Bo 5 0.14) are

1 Throughout this study we have used the following convention for the indeed orders of magnitude less than Ma (Ma 5 5200).representation of streamlines and isotherms: the streamlines are equally
Next the effects of the contact angle were investigatedspaced at Dc 5 (cmax 2 cmin)/15; the isotherms are also equally spaced

at DT 5 (TH 2 TC)/15. with Ma 5 5200, Ca 5 0.01, Gr 5 Bo 5 0, and d varying



FREE SURFACE IN BUOYANCY–THERMOCAPILLARY CONVECTION 49

FIG. 23. Surface deformation at various d with A 5 0.2, Ma 5 5200, Ca 5 0.01, and Gr 5 Bo 5 0.

from 08 to 2208 (corresponding to possible water-steel analytical (Eq. (28)) values of h(x) are compared and excel-
lent agreement results. It should be noted that for high dcontact angles). As shown in Figs. 21 and 22, for decreasing

d a secondary vortex in the upper and right region of the the analytical solution is not strictly valid; however, the
difference between this and the numerical solution is smallcavity appears and grows, which is different from the one

shown in Fig. 15 at d 5 08. In Fig. 23, numerical and (see Fig. 23 for tan d 5 20.35). Although the flow fields

FIG. 24. Effect of gravity on h(x) for Ma 5 5200, Ca 5 0.001, A 5 0.2, and tan d 5 20.25.
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have changed, the thermal gradient within the solution been applied to study the behavior of water in a steel
container for 5200 # Ma # 15600 and for earth and zerodomain is not significantly altered and is therefore not

presented here. gravity values and different contact angles. The effect of
Ma is significant only at d 5 08, whereas the gravity effectsThe effect of the Marangoni number (5200 # Ma #

15600) has been also studied at tan d 5 20.35, Ca 5 0.01 (Bo) become important at high contact angles.
in weightless conditions (Gr 5 Bo 5 0). Although the
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